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Program Overview
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Additive Contactor Design & Production,
Sorbent and Binder Coating Integration,
Small & Large Coated Parts Testing &
Process & Techno-Economic Modelling

Metal Organic Framework Sorbent
Synthesis, Characterization & Testing,
Sorbent Integrated Parts Testing

© Berkeley

Covalent Organic Framework
Synthesis, Characterization & Testing

UNIVERSITY OF
SOUTH ALABAMA

Multi-Component Adsorption &

Kinetics Characterization
. J

$2.5MM program (40% cost share)

2 Year Program POP 02/25/22 to 12/31/23
Program Participants

A GE Research

A TDA Research
A University of California, Berkeley
A University of South Alabama

Demonstrate TRL3 feasibility for a plastic additive
contactor design that captures 9M5% of CO, from a

natural gas turbine and demonstrates 15% lower LCOE

vs. current liguid amine capture systems



Additive Concept for NGCC Plant
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Demonstrate 40% lower CAPEX to get 15% lower LCOEJE



From Sorbent to Coated Contactor
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Chemical Synthesis ki »  Adsorptive Kinetics & Thermodynamics
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Molecular structure drives system performance 4




Technical Approach
3 Program Components for TRL3

Development Program for NGCC Additive System
AE Sorbent synthesis and characterization completed 2022

A} 2-Channel additive contactor design complete |
A: Additive printing modalities, materials, testing and desefection |

——————————————————————————————————————————————

AiSorbentbinder coatingdeveloped . 2022,
A1 Contactor coating process optimized . __ :
ArAdditive contactor parts coafing & festing™~ 2023

Al Integrated system testing completed & meeting requirements |

Component
Understanding
& Entitlement

ﬁ SyStem
Integration

System Testing
& Analysis

Understand components first then combined system



Uptake Data for TDA MOF-1

: Uptake loadings for TDA SSSA-1
j Surface Stabilized Supported Amine
: Inlet 4% CO2 @ 54 minute Cycles
. Isotherm data for TDA MOF-1 . $
. o ’ Inlet 518 ppm CO2
o ° 30-90°C Cycles

F,’Pu(atr;'\)

~ 5 wt.% CO, uptake and fast kinetics °




© Berkeley

UNIVERSITY OF CALIFORMIA

UCB Sorbent 3 (COF609)

TFPT=4,4'4 -(1,3,5Triazine-2,4,6 Triyl)Tris-Benzaldehyde CVE=Chloro Vinyl Ether
DABA= |-2,4diaminobutyric acid TRPN = Tris (3amino propyl) amine
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~ 5.7 wt.% CQO, uptake and kinetics TBD
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Kinetic Measurements

Frequency response quantifies the rate of {€ddsport using as little as 5 mg of material

With the transport rate, and an isotherm, system modeling and technoeconomic evaluations can be completed
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A Frequency response
characterizes the sorbent
dynamics by measuring the
system response to the varying
input CG, concentration

The gas concentration sine
wave perturbation is known,
the effluentis measured, and a
transfer function models the
behavior
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A Measure kinetic parameter k
for powder and film vs.
[CO

A Use values to model bed
breakthrough



Measured Sorbent Capacity and
Kinetics

Sorbent Productivity
A Productivity is a function of
CO, capacity and uptake rate

(CO,/sorbent/time) TS it

A Measured with isotherm and  soen o sssas, 4
kinetic uptake data PROClIGE MY g Gocticiiny
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A Main driver for contactor
sizing and cost (CAPEX)

Sorbent Capacity

A Understand as a function of °® .
temperature g .

A Set minimum based on o
preliminary TEA for 15% .
lower LCOE SR

A Update with future sorbent
development (other programs)

Determined requirements for sorbent productivity



Additive Contactor Design

Questions
A Need to determine hydraulic diameter for floy
A What is minimum wall thickness achievable
A Thinner walls desirable for heat transfer and
minimizing mass of the contactor
A What is the surface roughnessote desire
to coat surface enhanced with some roughne
A Make the parts modular so that the unit can |
constructed of pieces.

Gas Flow SULWLFDO WR 4XDOLW\ &74
A Non-porous surface between channels
A Good sorbent adhesion
A Pressure capable to 2 bar steam @135
A Sealable parts to prevent leakage
A > 1 year lifetime
A Scalable and integration into larger structure
A Cost competitive with traditional contactor
designs at scale
10

TEA to determine cost targets for contactor at scale



